A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina

نویسندگان

  • Ed Soucy
  • Yanshu Wang
  • Sheila Nirenberg
  • Jeremy Nathans
  • Markus Meister
چکیده

Current understanding suggests that mammalian rod photoreceptors connect only to an ON-type bipolar cell. This rod-specific bipolar cell excites the All amacrine cell, which makes connections to cone-specific bipolar cells of both ON and OFF type; these, in turn, synapse with ganglion cells. Recent work on rabbit retina has shown that rod signals can also reach ganglion cells without passing through the rod bipolar cell. This route was thought to be provided by electrical gap junctions, through which rods signal directly to cones and thence to cone bipolar cells. Here, we show that the mouse retina also provides a rod pathway bypassing the rod bipolar cell, suggesting that this is a common feature in mammals. However, this alternative pathway does not require cone photoreceptors; it is perfectly intact in a transgenic mouse whose retina lacks cones. Instead, the results can be explained if rods connect directly to OFF bipolar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina.

Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod s...

متن کامل

Strange vision: ganglion cells as circadian photoreceptors.

A novel photoreceptor of the mammalian retina has recently been discovered and characterized. The novel cells differ radically from the classical rod and cone photoreceptors. They use a unique photopigment, most probably melanopsin. They have lower sensitivity and spatiotemporal resolution than rods or cones and they seem specialized to encode ambient light intensity. Most surprisingly, they ar...

متن کامل

Blurring the Boundaries of Vision: Novel Functions of Intrinsically Photosensitive Retinal Ganglion Cells

Mammalian vision consists of the classic image-forming pathway involving rod and cone photoreceptors interacting through a neural network within the retina before sending signals to the brain, and a non image-forming pathway that uses a photosensitive cell employing an alternative and evolutionary ancient phototransduction system and a direct connection to various centers in the brain. Intrinsi...

متن کامل

Melanopsin Mediates Retrograde Visual Signaling in the Retina

The canonical flow of visual signals proceeds from outer to inner retina (photoreceptors → bipolar cells → ganglion cells). However, melanopsin-expressing ganglion cells are photosensitive and functional sustained light signaling to retinal dopaminergic interneurons persists in the absence of rods and cones. Here we show that the sustained-type light response of retinal dopamine neurons require...

متن کامل

Orexin-A Suppresses Signal Transmission to Dopaminergic Amacrine Cells From Outer and Inner Retinal Photoreceptors

Purpose The neuropeptides orexin-A and orexin-B are widely expressed in the vertebrate retina; however, their role in visual function is unclear. This study investigates whether and how orexins modulate signal transmission to dopaminergic amacrine cells (DACs) from both outer retinal photoreceptors (rods and cones) and inner retinal photoreceptors (melanopsin-expressing intrinsically photosensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1998